Abstract

Reactive gliosis is a complicated process involving all types of glial cells and is the therapeutic target of efforts to treat several types of neuropathologies. Parenchymal astrocytes continuously survey their microenvironment to identify even tiny abnormalities in the central nervous system (CNS) homeostasis and react rapidly to brain damage, such as following ischemia, trauma, or neurodegenerative diseases, to prevent propagation of tissue damage. Aging can play causal roles in certain astroglial dysfunctions, however, still little is known to what extent the heterogeneous reaction of astrocytes at the injury site might be impaired over the course of aging. Based on our experience with both in vitro and in vivo experimental paradigms, we describe here in detail the analysis of age-related changes in (1) proliferative response of parenchymal astrocytes within the posttraumatic cerebral cortex grey matter (GM), and (2) repertoire of their cell divisions in adherent cell culture prepared from the injured GM of young and old double transgenic GFAP-mRFP1/(FUCCI)-S/G2/M-mAG-hGeminin mice by single cell time-lapse imaging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.