Abstract

This paper investigates the problem of feature subset selection using a wrapper approach implemented using genetic algorithm and a constructive neural network. The main goal of the experiments conducted is to investigate whether the subset of features identified by the wrapper approach, implemented using the DistAl constructive neural algorithm, can also improve the accuracy of other constructive neural algorithms, namely, Tower, Tiling and Upstart algorithms. The results show that, in spite of the wrapper being directed by DistAl, the feature subsets selected can improve the accuracy of the other constructive neural algorithms as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.