Abstract
Abstract Nonmetallic composite pipes are one of the most effective ways to transport hydrogen. Basalt fiber materials can be used on hydrogen pipes, and simulation models of composite pipe under plate and spherical indenter loads were established to study the effects of structure parameters on the pipe's mechanical behavior and failure modes. The results show that the matrix is the weakest part of the composite pipe under spherical indenter load, the failure areas of each fiber layer change for winding angle. The ultimate load decreases with the increasing of diameter-thickness ratio, and that increases with a deviation of the fiber winding angle from the axial direction, the indent depth increases with the increasing of diameter-thickness ratio. Under plate load, the final deformation of composite pipe is affected by the fiber winding angle and diameter-thickness ratio. The weak part of composite pipe changes due to the fiber winding angle, but the failure areas start from the plastic line area. The ultimate load and total absorbed energy of composite pipes under plate load is proportional to the winding angle and inversely proportional to the diameter-thickness ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.