Abstract
We compare the convergence rates for inverting the Dirac matrix of a non-abelian gauge theory by the parallel transported multigrid algorithm (PTMG) and by the conjugate gradient (CG) approach. The test is carried out for SU(2) lattice gauge theory in two dimensions. The gauge field configurations are generated in the quenched approximation for various values of the gauge field correlation length ξ(β). We have performed runs for three different lattice sizes with the ratio ξ/ L kept fixed; L denotes the linear dimension of the square lattices used. As L increases, the PTMG becomes more and more efficient. On a 256×256 lattice with the bare quark mass m bare = 0.0005 and ξ = 20, the PTMG is at least ten times faster than the CG. It seems reasonable to expect similar results also in four dimensions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.