Abstract

We present an algorithm for inducing recursive clauses using inverse implication (rather than inverse resolution) as the underlying generalization method. Our approach applies to a class of logic programs similar to the class of primitive recursive functions. Induction is performed using a small number of positive examples that need not be along the same resolution path. Our algorithm, implemented in a system named CRUSTACEAN, locates matched lists of generating terms that determine the pattern of decomposition exhibited in the (target) recursive clause. Our theoretical analysis defines the class of logic programs for which our approach is complete, described in terms characteristic of other ILP approaches. Our current implementation is considerably faster than previously reported. We present evidence demonstrating that, given randomly selected inputs, increasing the number of positive examples increases accuracy and reduces the number of outputs. We relate our approach to similar recent work on inducing recursive clauses.KeywordsLogic ProgramRecursive RelationRecursive CallInductive Logic ProgrammingTarget TheoryThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call