Abstract
We study the Picard group of Franke's category of quasi-periodic $E_0E$-comodules for $E$ a 2-periodic Landweber exact cohomology theory of height $n$ such as Morava $E$-theory, showing that for $2p-2 > n^2+n$, this group is infinite cyclic, generated by the suspension of the unit. This is analogous to, but independent of, the corresponding calculations by Hovey and Sadofsky in the $E$-local stable homotopy category. We also give a computation of the Picard group of $I_n$-complete quasi-periodic $E_0E$-comodules when $E$ is Morava $E$-theory, as studied by Barthel-Schlank-Stapleton for $2p-2 \ge n^2$ and $p-1 \nmid n$, and compare this to the Picard group of the $K(n)$-local stable homotopy category, showing that they agree up to extension.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.