Abstract
We characterize the invertible matrices over a class of semirings such that the set of additively invertible elements is equal to the set of nilpotent elements. We achieve this by studying the liftings of the orthogonal sums of elements that are “almost idempotent” to those that are idempotent. Finally, we show an application of the obtained results to calculate the diameter of the commuting graph of the group of invertible matrices over the semirings in question.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.