Abstract

In this paper, we present the design and experimental evaluation of 1 V analog front-end amplifiers designed in 90 nm CMOS technology for capacitive micro-machined ultrasound transducers (CMUTs) for medical ultrasound imaging systems. We propose two front-end amplifier topologies based on an inverter-based cascode amplifier; the first is a continuous time amplifier and the second is a charge sampling amplifier (CSA). The proposed front-end amplifiers are designed to amplify the signals from CMUTs in the frequency bandwidth from 15 to 45 MHz with a centre frequency of 30 MHz. From the measurements, the continuous time single-ended transimpedance amplifier achieves a voltage gain of 19 dB, an output noise power spectral density of 0.042 (μV)/SQRT(Hz) at a centre-frequency of 30 MHz, and a total harmonic distortion of −23 dB at 450 mV p–p output voltage at 30 MHz input signal frequency. It draws only 598 μA per amplifier from a 1 V power supply. Its area measured only about 32 μm × 32 μm per amplifier. On the other hand, a sampling based front-end amplifier [CSA] achieves a transfer gain of 17.4 dB at an input signal frequency of 30 MHz and an upper 3 dB cut-off frequency of 46 MHz at a sampling clock frequency of 100 MHz. It consumes 586 μA per amplifier from a 1 V power supply and achieves a signal-to-noise (SNR) ratio of 45.7 dB with a peak-to-peak output signal amplitude of 500 mV at a sampling frequency of 100 MHz. It occupies an area of 1470.2 μm2 (which is equivalent to 38 μm × 38 μm), which also includes the area of the switches for the CSA that will be used for the single CMUT element.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call