Abstract
Recently, the xerographic depletion discharge (XDD) model has been applied extensively to chemically modified a-Se, a-Se1−xTex alloys, and a-As2Se3 as well as to a-Si:H films to study the nature of charge carrier generation from deep mobility gap states which control the dark decay of the electrostatic surface potential on a corona charged amorphous semiconductor. In the normal XDD model, the dark discharge involves bulk thermal generation of a mobile carrier of the same sign as the surface charge and its subsequent sweep out from the sample leaving behind an ionized center of opposite charge. It is shown that an ‘‘inverted depletion discharge’’ mechanism, which involves the thermal generation of a mobile charge carrier of the opposite sign to the surface charge and its subsequent drift to the surface and the resulting surface charge neutralization there, results in a dark discharge rate which has identical features as the normal XDD mechanism. In the normal XDD mechanism, the neutral region develops after the depletion time from the grounded electrode, whereas in the inverted XDD mechanism the neutral region grows from the surface. Furthermore, during inverted depletion discharge the surface charge is actually dissipated by neutralization, whereas in the normal depletion discharge model there is no such requirement over the time scale of the experiment. It is concluded that xerographic dark decay experiments alone cannot determine the sign of the thermally generated mobile carrier and that of the bulk space charge. Chemically modified amorphous selenium case is discussed as an example of surface potential decay resulting from bulk space-charge buildup.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.