Abstract

During development, the subplate zone of the cat neocortex contains neuronal populations with distinct morphological and neurochemical phenotypes. A subset of those are specifically recognized by a mouse monoclonal antibody termed SUBPLATE-1 (SP1), which was generated against tissue homogenates of kitten cortical white matter. SP1 stains cell bodies and proximal dendrites, but rarely distal dendrites, axonal arbors or spines. In order to characterize morphologically the SP1 immunoreactive subplate cell types, we combined SP1 immunohistochemistry with intracellular iontophoretic injections of Lucifer yellow. The majority of double-labelled neurons were inverted pyramids with a single thicker spine-covered dendrite that descended into the white matter and a tuft of thinner spinous dendrites that ascended from the upper somatic pole, but generally remained confined to the white matter. Other double-labelled neurons were multipolar to bitufted, although often equipped with one thicker descending dendrite. In inverted pyramidal cells, the axons originated from the descending dendrite or, more rarely, from the lower portion of the soma, and descended into the white matter. They formed collaterals recurring toward the grey matter. The presence of dendritic spines on double-labelled pyramidal cells and the axonal arborization patterns were two novel features not revealed previously by SP1 immunohistochemistry alone. The inverted pyramidal morphology was typical for double-labelled neurons located in the subplate zone below the apices of the gyri, whereas those located below the flanks or sulci or deep in the white matter often displayed a bitufted or multipolar spinous morphology. A minority of the double-labelled neurons were multipolar with smooth dendrites and locally branching axons. These results suggest that in the cat subplate zone, a majority of the cells expressing the SP1 antigen are spinous, and we termed the spinous subplate cells 'subplate pyramidal neurons'.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call