Abstract

We investigate the influence of solution-processed cesium fluoride (CsF) interlayers on the performance of inverted polymer solar cells comprising a blend of poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl C61-butyric acid methyl ester. The thickness of the CsF layer is optimized in terms of current-voltage characteristics by a variation of the solid content in solution. Capacitance-voltage characteristics reveal a shift of the built-in voltage at the cathode interface by about 0.3 V as compared to devices without a CsF layer, giving rise to an increase in open-circuit voltage by the same value. The vertical distribution of Cs+ and F+ ions is studied by secondary ion mass spectroscopy, indicating a strong diffusion of the alkaline fluoride into the organic layer stack.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.