Abstract

A substantial increase in device performance and operational stability in solution processed inverted bulk heterojunction (BHJ) organic photovoltaic devices (OPV) is demonstrated by introducing a zinc oxide (ZnO) interlayer between the electron collecting bottom electrode and the photoactive blend of poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM). The structure and morphology of the dense, planar ZnO layers were controlled either by electro-deposition or spray pyrolysis techniques. Metal oxide sandwich OPV devices based on the photoactive blend on an electro-deposited ZnO interlayer with a (100) preferential crystal orientation, and using a tungsten oxide (WOx) interlayer on the opposite electrode, resulted in a remarkable increase in power conversion efficiency with a value of 4.91% under AM1.5 illumination and an external quantum efficiency of 74%. Electro-deposition of the ZnO at low temperature proved to be the most promising method for forming the ZnO interlayers, allowing the highest control of film structure and morphology, as well as leading to significantly improved device efficiency and stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.