Abstract

A new triple-junction solar cell (3J) design exploiting the highly absorptive I–III–VI chalcopyrite CuInSe2material is proposed as an alternative to III–V semiconductor 3J solar cells. The proposed structure consists of GaInP (1.9 eV)/Ga(In)As (1.4 eV)/CuInSe2(1 eV) which can be grown on a GaAs substrate in an inverted manner using epitaxial lift-off techniques. To lattice-match epitaxial CuInSe2to Ga(In)As, a compositionally graded buffer region composed of GaxIn1−xP is used. The modeling and simulation of the device include the effects of threading dislocations on minority carrier lifetimes in the metamorphic buffer and bottom subcell active region. Studies focus on device performance under standard testing conditions and concentrated illumination. The results are compared to a reference lattice mismatched 3J composed of GaInP (1.9 eV)/Ga(In)As (1.4 eV)/GaInAs (1 eV) and to a lattice matched 3J composed of GaInP (1.9 eV)/Ga(In)As (1.4 eV)/Ge (0.67 eV). The advantage of CuInSe2is its higher absorption coefficient, which requires only 1 μm of active material compared to 4 μm of GaInAs in the bottom subcell of the reference lattice mismatched cell. The proposed design reaches an efficiency of 32.6% under 1 sun illumination at 300 K with 105 cm−2threading dislocations and 39.6% at 750 suns.

Highlights

  • The area of research and development in photovoltaic device technologies has led to significant increases in power conversion efficiencies from 17% to 44.4% since 1983 [1]

  • For more ideal current matching, a metamorphic lattice mismatched (LMM) 3J design composed of GaInP (1.9 eV)/Ga(In)As (1.4 eV)/Ga0.7In0.3As (1.0 eV) has been proposed [2], where the Ge bottom subcell has been replaced with the LMM ternary alloy Ga0.7In0.3As

  • To maintain high crystalline material quality, the device requires an inverted growth on a GaAs substrate such that the formation of threading dislocations resulting from the LMM induced strain is confined within a compositionally graded buffer (CGB) region located away from the active regions of the middle and top subcells [3, 4]

Read more

Summary

Introduction

The area of research and development in photovoltaic device technologies has led to significant increases in power conversion efficiencies from 17% to 44.4% since 1983 [1]. The example of current state-of-the-art triplejunction solar cells (3Js) composed of III–V semiconductor materials is the bandgap engineered lattice matched (LM) Ga0.44In0.56P/Ga0.92In0.08As/Ge solar cell. This cell has achieved efficiencies greater than 40% under concentrated illumination [2] despite a nonoptimal bandgap of the germanium bottom subcell leading to a significant overproduction of photocurrent and thereby limiting the device’s efficiency.

Structures
Numerical Model
Simulation Results
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call