Abstract

This paper introduces the Inverted Hierarchical Neuro-Fuzzy BSP System (HNFB/sup -1/), a new neuro-fuzzy model that has been specifically created for record classification and rule extraction in databases. The HNFB/sup -1/ is based on the Hierarchical Neuro-Fuzzy Binary Space Partitioning Model (HNFB), which embodies a recursive partitioning of the input space, is able to automatically generate its own structure, and allows a greater number of inputs. The new HNFB/sup -1/ allows the extraction of knowledge in the form of interpretable fuzzy rules expressed by the following: If x is A and y is B, then input pattern belongs to class Z. For the process of rule extraction in the HNFB/sup -1/ model, two fuzzy evaluation measures were defined: 1) fuzzy accuracy and 2) fuzzy coverage. The HNFB/sup -1/ has been evaluated with different benchmark databases for the classification task: Iris Dataset, Wine Data, Pima Indians Diabetes Database, Bupa Liver Disorders, and Heart Disease. When compared with several other pattern classification models and algorithms, the HNFB/sup -1/ model has shown similar or better classification performance. Nevertheless, its performance in terms of processing time is remarkable. The HNFB/sup -1/ converged in less than one minute for all the databases described in the case study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.