Abstract
BackgroundWithin the class Enoplea, the earliest-branching lineages in the phylum Nematoda, the relatively highly conserved ancestral mitochondrial architecture of Trichinellida is in stark contrast to the rapidly evolving architecture of Dorylaimida and Mermithida. To better understand the evolution of mitogenomic architecture in this lineage, we sequenced the mitogenome of a fish parasite Pseudocapillaria tomentosa (Trichinellida: Capillariidae) and compared it to all available enoplean mitogenomes.ResultsP. tomentosa exhibited highly reduced noncoding regions (the largest was 98 bp), and a unique base composition among the Enoplea. We attributed the latter to the inverted GC skew (0.08) in comparison to the ancestral skew in Trichinellidae (-0.43 to -0.37). Capillariidae, Trichuridae and Longidoridae (Dorylaimida) generally exhibited low negative or low positive skews (-0.1 to 0.1), whereas Mermithidae exhibited fully inverted low skews (0 to 0.05). This is indicative of inversions in the strand replication order or otherwise disrupted replication mechanism in the lineages with reduced/inverted skews. Among the Trichinellida, Trichinellidae and Trichuridae have almost perfectly conserved architecture, whereas Capillariidae exhibit multiple rearrangements of tRNA genes. In contrast, Mermithidae (Mermithida) and Longidoridae (Dorylaimida) exhibit almost no similarity to the ancestral architecture.ConclusionsLongidoridae exhibited more rearranged mitogenomic architecture than the hypervariable Mermithidae. Similar to the Chromadorea, the evolution of mitochondrial architecture in enoplean nematodes exhibits a strong discontinuity: lineages possessing a mostly conserved architecture over tens of millions of years are interspersed with lineages exhibiting architectural hypervariability. As Longidoridae also have some of the smallest metazoan mitochondrial genomes, they contradict the prediction that compact mitogenomes should be structurally stable. Lineages exhibiting inverted skews appear to represent the intermediate phase between the Trichinellidae (ancestral) and fully derived skews in Chromadorean mitogenomes (GC skews = 0.18 to 0.64). Multiple lines of evidence (CAT-GTR analysis in our study, a majority of previous mitogenomic results, and skew disruption scenarios) support the Dorylaimia split into two sister-clades: Dorylaimida + Mermithida and Trichinellida. However, skew inversions produce strong base composition biases, which can hamper phylogenetic and other evolutionary studies, so enoplean mitogenomes have to be used with utmost care in evolutionary studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.