Abstract
Autotomy, the discarding of a prey appendage grasped by a predator, may evolve when the benefits of immediate survival outweigh the costs of appendage loss. In larval damselflies, joints connecting lamellae to the abdomen vary in size and shape within and among taxa suggesting that they may evolve under selection by invertebrate predators, such as dragonfly larvae. Assuming that joint width is proportional to the force required for autotomy, we tested if invertebrate predation favours smaller lamellar joints for autotomy or larger joints for structural support of lamellae for swimming. We compared the maximum joint widths of larval Lestes and Enallagma among ponds that varied in risk of invertebrate predation. Relative predation risk estimated as the frequency of regenerated lamellae within ponds was weakly and positively related to the relative abundance of larval dragonflies. The allometry of lamellar joint size decreased with increasing risk of invertebrate predation across ponds after controlling for variation in body size in Lestescongener but not in Enallagma species. Both species of Lestes had larger joint sizes than the five species of Enallagma, suggesting that the ancestral divergence of lamellar joints between these genera may influence contemporary responses to invertebrate predation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.