Abstract

AbstractSalt stress reduces grain yield of maize (Zea mays L.) due to poor kernel setting but not due to decreased grain filling. In the present study, it was tested whether acid invertase activity is decreased in developing kernels of maize under salt stress, and if assimilate supply is limited. The relatively salt‐sensitive maize hybrid Pioneer 3906 was compared with the more salt‐resistant hybrid SR 12. Salt stress caused a significant decrease in grain yield which was due to a 50% decrease in kernel number. No source limitation was observed, as the sucrose concentrations in kernels were significantly increased under salt stress for both genotypes. In contrast, glucose and fructose concentrations in kernels were significantly decreased. Salt stress caused a significant inhibition of soluble acid invertase activity to 19% in hydroponics 5 d after pollination (5 DAP) and to 50% in the soil culture experiment (2 DAP). The decrease in enzyme activity was the same for both genotypes. In the soil experiment, the highest soluble acid invertase activity was found 2 DAP with a steep decline until 8 DAP in Pioneer 3906. It is concluded that a decrease in acid invertase activity is a key factor associated with limited kernel setting under salt stress but additional factors may be responsible for genotypic differences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.