Abstract

Abstract We predict facies from wireline well log data for a fluvial deposit system offshore Norway. The wireline well logs used are sonic, gamma ray, neutron porosity, bulk density and resistivity. We solve this inverse problem in a predictive Bayesian setting, and perform the associated model parameter estimation. Spatial vertical structure of the facies is included in the model by a Markov chain assumption, making geological model interpretation possible. We also take convolution effect into account, assuming that the observed logs might be measured as a weighted sum of properties over a facies interval. We apply the methods on real well data, with thick facies layers inferred from core samples. The proposed facies classification model is compared to a naive Bayesian classifier, which does not take into account neither vertical spatial dependency, dependencies between the wireline well logs nor convolution effect. Results from a blind well indicate that facies predictions from our model are more reliable than predictions from the naive model in terms of correct facies classification and predicted layer thickness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.