Abstract

To understand the behavior of chiral nanostructures, it is of critical importance to study how achiral molecules regulate the chirality of such nanostructures and what the main driving forces for the regulation processes are. In this work, the supramolecular chirality of helical nanofibers consisting of phenylalanine-based enantiomers is inverted by achiral bis(pyridinyl) derivatives through co-assembly. This inversion is mainly mediated by intermolecular hydrogen bonding interactions between the achiral additives and the chiral molecules, which may induce stereoselective interactions and different reorientations for the assembled molecules, as confirmed by calculations. This work not only exemplifies a feasible method to invert the helicity of chiral nanostructures by the addition of achiral molecules, but also provides a method to explore their functions in environments where chiral and achiral molecules are in close proximity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call