Abstract
Net photosynthetic rate (Pn) is a common indicator used to measure the efficiency of photosynthesis and growth conditions of plants. In this study, soybeans under different moisture gradients were selected as the research objects. Fourteen vegetation indices (VIS) and five canopy structure characteristics (CSC) (plant height (PH), volume (V), canopy cover (CC), canopy length (L), and canopy width (W)) were obtained using an unmanned aerial vehicle (UAV) equipped with three different sensors (visible, multispectral, and LiDAR) at five growth stages of soybeans. Soybean Pn was simultaneously measured manually in the field. The variability of soybean Pn under different conditions and the trend change of CSC under different moisture gradients were analysed. VIS, CSC, and their combinations were used as input features, and four machine learning algorithms (multiple linear regression, random forest, Extreme gradient-boosting tree regression, and ridge regression) were used to perform soybean Pn inversion. The results showed that, compared with the inversion model using VIS or CSC as features alone, the inversion model using the combination of VIS and CSC features showed a significant improvement in the inversion accuracy at all five stages. The highest accuracy (R2 = 0.86, RMSE = 1.73 µmol m−2 s−1, RPD = 2.63) was achieved 63 days after sowing (DAS63).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.