Abstract

An analytic method is presented to estimate the evolution of electrical charge distribution inside the human brain related to the evoked potentials observed on the head surface. A three-layer concentric spherical human head model is adopted to express the relation between the observed potentials on the head surface and the spatial charge distribution inside the brain. An integral equation associated with the three-layer concentric head model Green's function is employed. Assuming the electric potentials are measured on the head surface, the charge distributions inside the human brain are computed by solving an inverse problem. The Green's function integral equation is inverted by using an algebraic reconstruction technique widely employed in X-ray tomography imaging. The accuracy of the proposed technique is examined by employing computer simulations and by checking the self-consistency of the algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.