Abstract
Using the logic for quantitative inversion of present-day downhole thermal indicators, the inversion procedure can be used to determine unknown, or poorly known, chemical and physical parameters as well as other geological quantities of interest which impact on burial history and thermal history of an evolving sedimentary basin. Some such quantities are: amount of erosion and timing of unconformities, paleo-overpressuring, stratigraphic age, timing of igneous intrusion and insertion temperature, overthrust timing and frictional heating, fault and slump timing, effects due to emplacement of a radiocative layer, and salt emplacement and dissolution timing. Combining a priori unknown values of these chemical/physical and geological parameters with unknown (a priori) paleoheat flux variations, a theoretical scheme, called thermal indicator tomography, is developed for the systematic determination of all parameters at the same time and on the same footing. Case histories will be discussed in subsequent papers in this series.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.