Abstract

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 202260, “Inversion of Advanced Full Waveform Sonic Data Provides Magnitudes of Minimum and Maximum Horizontal Stress for Calibrating the Geomechanics Model in a Gas Storage Reservoir,” by Zachariah J. Pallikathekathil, SPE, Xing Wang Yang, and Saeed Hafezy, Schlumberger, et al., prepared for the 2020 SPE Asia Pacific Oil and Gas Conference and Exhibition, originally scheduled to be held in Perth, Australia, 20–22 October. The paper has not been peer reviewed. In 1D geomechanics projects, calibration of stress is extremely important in the construction of a valid mechanical earth model (MEM). The effective minimum horizontal stress (Shmin) data usually are available from traditional measurements, but these have a few deficiencies. The complete paper presents a technique for deriving stresses in which the radial variation of acoustic velocity from an advanced dipole sonic logging tool is inverted to obtain stress. These derived stresses are then used to calibrate the 1D MEM for a gas storage field. Regional Geology The field is in the Otway Basin in Western Victoria. Gas is trapped in the Late Cretaceous Waarre formation at depths between 1155 and 1200 m subsea. The reservoir is sealed by the overlying marine Belfast mudstone, which is the common seal in the stratigraphy across the onshore Otway Basin. The reservoir has excellent reservoir quality and has proved ideal for gas storage. Challenge Posed by the 1D MEM Challenge Posed by the 1D MEM Well 1 was recently drilled in the basin. A 1D MEM - a numerical representation of the geomechanical properties and stress state of the earth at any depth - was planned to be constructed to obtain the current-day far-field principal stresses (Shmin), effective maximum horizontal stress (SHmax), and effective vertical stress (SV)] in the Belfast and Waarre formations. Understanding the stress field was important, especially in the caprock (Belfast) and in the reservoir (Waarre) so that the pressure limits for safe gas-storage operation could be defined better. However, for a variety of reasons, no conventional stress measurements were available to calibrate the modeled stress in the 1D MEM. Without any calibration of the stress, the geomechanics model would feature high uncertainty to be used to define the pressure operational limits for gas-storage operation. Fortunately, a new wireline sonic tool was recorded in the reservoir section and the overburden sections of the borehole in Well 1. A quick dispersion analysis of the waveforms showed that the Paaratte formation, above the Belfast formation, was acoustically stress-sensitive and that advanced processing could be performed to invert the acoustic information to stress values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.