Abstract

Abstract Exposure of synthetic polynucleotide poly(dG-dC)·poly(dG-dC) to ZnII cyclen, 2 (cyclen = 1,4,7,10-tetraazacyclododecane), produces a dramatic change in its circular dichroism (CD) spectrum in H2O at pH 7.2, 24°C: the CD spectrum of the initial B form changes to that of the Z form (or a non-Z structure with a left-handed helix) at very low concentrations ([ZnII]/[base pair] in molar basis ≤ 1). By contrast, ZnII-[12]aneN3, 1 ([12]aneN3 = 1,5,9-triazacyclododecane), and ZnII-cyclam, 3 (cyclam = 1,4,8,11-tetraazacyclo-tetradecane), do not significantly have such a topological affect on the polynucleotide even at much higher concentrations. An increase in Na+ ionic strength nullified the effect of 2 on the CD spectrum, indicating an outside interaction (electrostatic and/or hydrogen bonding) of the DNA model. This study illustrates the significance of the macrocyclic ligand structure around the ZnII ion for specific interaction with DNA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call