Abstract

AbstractNucleophilic substitution results in inversion of configuration at the electrophilic carbon center (SN2) or racemization (SN1). The stereochemistry of the nucleophile is rarely considered, but phosphines, which have a high barrier to pyramidal inversion, attack electrophiles with retention of configuration at P. Surprisingly, cyclization of bifunctional secondary phosphine alkyl tosylates proceeded under mild conditions with inversion of configuration at the nucleophile to yield P‐stereogenic syn‐phosphiranes. DFT studies suggested that the novel stereochemistry results from acid‐promoted tosylate dissociation to yield an intermediate phosphenium‐bridged cation, which undergoes syn‐selective cyclization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.