Abstract

The description of many dynamical problems such as the particle motion in higher dimensional spherically and axially symmetric space-times is reduced to the inversion of hyperelliptic integrals of all three kinds. The result of the inversion is defined locally, using the algebro-geometric techniques of the standard Jacobi inversion problem and the foregoing restriction to the θ-divisor. For a representation of the hyperelliptic functions the Klein–Weierstraß multi-variable σ-function is introduced. It is shown that all parameters needed for the calculations such as period matrices and abelian images of branch points can be expressed in terms of the periods of holomorphic differentials and θ-constants. The cases of genus two, three, and four are considered in detail. The method is exemplified by the particle motion associated with genus one elliptic and genus three hyperelliptic curves. Applications are for instance solutions to the geodesic equations in the space-times of static, spherically symmetric Hořava–Lifshitz black holes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.