Abstract

Applications of hyperspectral remote sensing data to derive relevant properties for precision agriculture are described. Green leaf area index, fraction of senescent material and grain yield are retrieved from the hyperspectral data. Two sensors were used to obtain these data; the airborne visible/infrared imaging spectrometer AVIS and the space-borne compact high-resolution imaging spectrometer CHRIS; they show the applicability of the methods to different spatial scales. In addition, the bi-directional observation capability of the CHRIS sensor is used to derive information about the average leaf angle of the canopies which are used to link canopy structure with phenological development. Derivation of the canopy properties, green leaf area index and fraction of senescent material was done with the radiative transfer model, SLC (soil–leaf–canopy). The results were used as input into the crop growth model PROMET-V to calculate grain yield. Two years of data from the German research project preagro are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.