Abstract

Physically‐based models of vegetation reflectance serve as a basis for extracting vegetation variables using directional and spectral data from modern‐borne sensors (e.g., MODIS, MISR, POLDER, SeaWiFS). Although many models have been inverted, only recently have significant efforts been made to provide operational algorithms. These efforts have exposed a need to significantly improve efficient and accurate methods for inverting these physically‐based models. The characteristics of the traditional inversion, table look‐up, neural network and other methods are discussed as well as the major achievements, advantages/disadvantages, and research issues for each method. The traditional inversion methods using repeated model runs are computationally intensive and are not appropriate for operational application on a per pixel basis for regional and global data. Thus, for larger data sets, simplified (reduced number of variables and/or physical processes) physically‐based models are generally used. The table look‐...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.