Abstract

Sentinel-2A multi-spectral remote sensing image data underwent high-efficiency differential processing to extract spectral information, which was then matched to soil organic matter (SOM) laboratory test values from field samples. From this, multiple-linear stepwise regression (MLSR) and partial least square (PLSR) models were established based on a differential algorithm for surface SOM modeling. The original spectra were subjected to basic transformations with first- and second-derivative processing. MLSR and PLSR models were established based on these methods and the measured values, respectively. The results show that Sentinel-2A remote sensing imagery and SOM content correlated in some bands. The correlation between the spectral value and SOM content was significantly improved after mathematical transformation, especially square-root transformation. After differential processing, the multi-band model had better predictive ability (based on fitting accuracy) than single-band and unprocessed multi-band models. The MLSR and PLSR models of SOM had good prediction functionality. The reciprocal logarithm first-order differential MLSR regression model had the best prediction and inversion results (i.e., most consistent with the real-world data). The MLSR model is more stable and reliable for monitoring SOM content, and provides a feasible method and reference for SOM content-mapping of the study area.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.