Abstract

We introduce a sector-based inversion method to improve the petrophysical interpretation of logging-while-drilling density measurements acquired in high-angle and horizontal wells. The central objective is to reduce shoulder-bed effects on the measurements. This approach is possible because of a recently developed technique to accurately and efficiently simulate borehole density measurements. The inversion-based interpretation method consists of first detecting bed boundaries from short-spacing detector or bottom-quadrant compensated density by calculating their variance, representative of the measurement inflection point, within a sliding window. Subsequently, a correlation algorithm calculates dip and azimuth from the density image. Depth shifts that vary azimuthally and depend on relative dip angle, together with the effective penetration length of each sensor, refine previously selected bed boundaries. Next, the inversion method combines sector-based density measurements acquired at all measurement points along the well trajectory to estimate layer-by-layer densities. In the presence of standoff, the method excludes upper sectors most affected by standoff to reduce inaccuracies due to borehole mud. To verify the reliability and applicability of the inversion method, we first use forward simulations to generate synthetic density images for a model constructed from field data. Results indicate that inversion improves the interpretation of azimuthal density data as it consistently reduces shoulder-bed effects. Inversion results obtained from field measurements are appraised by quantifying the corresponding integrated porosity-meter yielded by inversion methods in comparison to standard techniques that use simple cutoffs on field-processed compensated density. Integrated porosity-meter of inverted synthetic density measurements increases by 4.6% with respect to noninverted field measurements. Also, integrated porosity-meter obtained from inversion results that include only bottom sectors improved by 65.4% with respect to that calculated with field-compensated, bottom-quadrant density measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.