Abstract
Acoustic impedance inversion (AI) and simultaneous angle-dependent inversion (SADI) of a 3D seismic data set characterize reservoirs of Mississippian Morrowan age in the triangle zone of the frontal Ouachita Mountains, Oklahoma. Acoustic impedance of the near-angle seismic data images the 3D spatial distributions of Wapanucka limestone and Cromwell sandstone. Lamé [Formula: see text] ([Formula: see text] and [Formula: see text]) and [Formula: see text] sections are derived from the P-wave and S-wave impedance ([Formula: see text] and [Formula: see text]) sections produced by the SADI. Lithology is identified from the gamma logs and [Formula: see text]. The [Formula: see text], [Formula: see text], and [Formula: see text] are interpreted in terms of a hydrocarbon distribution pattern. The [Formula: see text] is used to identify high [Formula: see text] regions that are consistent with high sand/shale ratio. The estimated impedances and derived Lamé parameter sections are consistent with the interpretation that parts of the Wapanucka limestone and Cromwell sandstone contain potential gas reservoirs in fault-bounded compartments. The Cromwell sandstone contains the main inferred reservoirs; the two largest of these are each [Formula: see text] in pore volume. The inversion results also explain the observed low production in previous wells because those did not sample the best compartments. We propose a single new well location that would penetrate both reservoirs; 3D visualization facilitates this recommendation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.