Abstract

A novel robust hierarchical multi-loop composite control scheme is proposed for the trajectory tracking control of robotic manipulators subject to constraints and disturbances. The inner loop based on inverse dynamics control is used to reduce the nonlinear tracking error system to a set of decoupled linear subsystems to alleviate the computational effort during the sequel optimization. The feasible regions of the equivalent state and control input of each subsystem can be computed efficiently by choosing an appropriate inertia matrix estimate. The external loop, relying on a set of separate disturbance-observer-based tube model predictive composite controllers, is used to robustly stabilize the decoupled subsystems. In particular, the disturbance observers are designed to compensate for the disturbances actively, while the tube model predictive controllers are used to reject the residual disturbances. The robust tightened constraints are obtained by calculating the outer-bounding-tube-type residual disturbance invariant sets of the closed-loop subsystems. Furthermore, the recursive feasibility and input-to-state stability of the closed-loop system are investigated. The effectiveness of the proposed control scheme is verified by the simulation experiment on a PUMA 560 robotic manipulator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.