Abstract

A strategy is presented for applying the proper orthogonal decomposition (POD) technique for model reduction in computational inverse solution strategies for viscoelastic material characterization. POD is used to derive a basis of optimal dimension from a selection of possible solution fields which are generated through a traditional acoustic–structure interaction finite element model for a given vibroacoustic experiment. The POD bases are applied with the Galerkin weak-form finite element method to create a reduced-order numerical model with decreased computational cost, but which still maintains accuracy close to that of the original full-order finite element model. The reduced-order model is then combined with a global optimization technique to identify estimates to the viscoelastic material properties of a fluid immersed solid from vibroacoustic tests. A strategy is also presented to select the viscoelastic parameters of the initial full-order analyses used to create the POD bases. The selection process is shown through an example to maximize the generalization capabilities of the reduced-order model over the material search space for a minimal number of full-order analyses. Two examples are then presented in which the parameters of rheological viscoelastic models are identified for solids immersed in water, which are subject to a steady-state harmonic pressure while the acoustic response is measured at a point in the surrounding fluid. The POD reduced-order models were able to generalize over the material search domains for the inverse problems. Therefore, the reduced-order solution strategy was capable of identifying accurate estimates to the viscoelastic behavior of the solids with minimal computational expense.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call