Abstract

Modern monitoring devices can inexpensively extract a huge amount of data from water-distribution systems through measurements of pressure (and sometimes flows). These data can be used in algorithms for transient analysis, time-lagged calculations, inverse calculations, and event detection to continuously determine the calibration and the general state of health of the distribution system. The last three calculations depend on the first. The most useful of those three is the inverse calculation, which can calibrate while determining leaks or unauthorized use. A key to efficient calculation is the adjoint solution of the system (generally easier than the transient analysis) to find gradient data and a Jacobian matrix. These are used to find a Hessian matrix, which is used in the Levenberg-Marquardt method to adjust parameters so as to minimize the difference between calculated and measured heads. The adjoint method is also used to compute sensitivities, which are valuable in judging the quality of the solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.