Abstract

X-ray photon correlation spectroscopy (XPCS), an extension of dynamic light scattering (DLS) in the X-ray regime, detects temporal intensity fluctuations of coherent speckles and provides scattering vector-dependent sample dynamics at length scales smaller than DLS. The penetrating power of X-rays enables probing dynamics in a broad array of materials with XPCS, including polymers, glasses and metal alloys, where attempts to describe the dynamics with a simple exponential fit usually fails. In these cases, the prevailing XPCS data analysis approach employs stretched or compressed exponential decay functions (Kohlrausch functions), which implicitly assume homogeneous dynamics. In this paper, we propose an alternative analysis scheme based upon inverse Laplace or Gaussian transformation for elucidating heterogeneous distributions of dynamic time scales in XPCS, an approach analogous to the CONTIN algorithm widely accepted in the analysis of DLS from polydisperse and multimodal systems. Using XPCS data measured from colloidal gels, we demonstrate the inverse transform approach reveals hidden multimodal dynamics in materials, unleashing the full potential of XPCS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.