Abstract

Inverse thermal analyses of structural steel deep-penetration welds are presented. These analyses employ a methodology that is in terms of numerical-analytical basis functions and constraint conditions for inverse thermal analysis of steady-state energy deposition in plate structures. These analyses provide parametric representations of weld temperature histories that can be adopted as input data to various types of computational procedures, such as those for prediction of solid-state phase transformations and mechanical response. In addition, these parameterized temperature histories can be used for inverse thermal analysis of welds corresponding to other welding processes whose process conditions are within similar regimes. The present study applies an inverse thermal analysis procedure that uses three-dimensional constraint conditions whose two-dimensional projections are mapped within transverse cross sections of experimentally measured solidification boundaries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.