Abstract

Numerical modeling methods and hyperthermia treatment temperature measurements have been used together to reconstruct steady-state tumor temperature distributions. However, model errors will exist which may in turn produce errors in the reconstructed temperature distributions. A series of computer experiments was conducted to study the sensitivity of reconstructed two-dimensional temperature distributions to perfusion distribution modeling errors. Temperature distributions were simulated using a finite element approximation of Pennes' bioheat transfer equation. Relevant variables such as tumor shape, perfusion distribution, and power deposition were modeled. An optimization method and the temperatures "measured" from the simulated temperature distributions were used to reconstruct the tumor temperature distribution. Using this procedure, the sensitivity of the reconstructed tumor temperature distribution to model-related errors, such as the perfusion function, was studied. It was found that: 1) if the problem is conduction dominated, large errors in the perfusion distribution produce only small errors in the reconstructed temperature distribution (maximum error < 1.0 degrees C), and 2) when the actual perfusion distribution contains a small random variation (+/- 15%) which is neglected by the model, the reconstructed temperature distribution will be in good agreement with the actual temperature distribution (maximum error < or = 0.3 degrees.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.