Abstract
Identification of complicated quantum environments lies in the core of quantum engineering, which systematically constructs an environment model with the aim of accurate control of quantum systems. In this paper, we present an inverse-system method to identify damping rate functions which describe non-Markovian environments in time-convolution-less master equations. To access information on the environment, we couple a finite-level quantum system to the environment and measure time traces of local observables of the system. By using sufficient measurement results, an algorithm is designed, which can simultaneously estimate multiple damping rate functions for different dissipative channels. Further, we show that identifiability for the damping rate functions corresponds to the invertibility of the system and a necessary condition for identifiability is also given. The effectiveness of our method is shown in examples of an atom and three-spin-chain non-Markovian systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.