Abstract

Spin-charge interconversion is currently the focus of intensive experimental and theoretical research both for its intrinsic interest and for its potential exploitation in the realization of new spintronic functionalities. Spin-orbit coupling is one of the key microscopic mechanisms to couple charge currents and spin polarizations. The Rashba spin-orbit coupling in a two-dimensional electron gas has been shown to give rise to the inverse spin galvanic effect, i.e., the generation of a non-equilibrium spin polarization by a charge current. Whereas the Rashba model may be applied to the interpretation of experimental results in many cases, in general, in a given real physical system, spin-orbit coupling also occurs due to other mechanisms such as Dresselhaus bulk inversion asymmetry and scattering from impurities. In this work, we consider the inverse spin galvanic effect in the presence of Rashba, Dresselhaus and impurity spin-orbit scattering. We find that the size and form of the inverse spin galvanic effect is greatly modified by the presence of the various sources of spin-orbit coupling. Indeed, spin-orbit coupling affects the spin relaxation time by adding the Elliott–Yafet mechanism to the Dyakonov–Perel, and, furthermore, it changes the non-equilibrium value of the current-induced spin polarization by introducing a new spin generation torque. We use a diagrammatic Kubo formula approach to evaluate the spin polarization-charge current response function. We finally comment about the relevance of our results for the interpretation of experimental results.

Highlights

  • The spin galvanic effect and its inverse manifestation have been intensively investigated over the past decade both for their intrinsic fundamental interest [1] and for their application potential in future generation electronic and spintronics technology [2,3]

  • The Rashba spin-orbit coupling in a two-dimensional electron gas has been shown to give rise to the inverse spin galvanic effect, i.e., the generation of a non-equilibrium spin polarization by a charge current

  • The non-equilibrium generation of a spin polarization perpendicular to an externally applied electric field is referred to as the inverse spin galvanic effect (ISGE), whereas the spin galvanic effect (SGE) is its Onsager reciprocal, whereby a spin polarization injected through a nonmagnetic material creates a charge current in the direction perpendicular to the spin polarization

Read more

Summary

Introduction

The spin galvanic effect and its inverse manifestation have been intensively investigated over the past decade both for their intrinsic fundamental interest [1] and for their application potential in future generation electronic and spintronics technology [2,3]. It has been shown theoretically [29] that the interplay of intrinsic and extrinsic SOC gives rise to an additional spin torque in the Bloch equations for the spin dynamics and affects the value of the ISGE. This additional spin torque, which is proportional to both the EY spin relaxation rate and to the coupling constant of RSOC, has been derived in [29] in the context of the SU(2) gauge theory formulation mentioned above.

Linear Response Theory
Inverse Spin-Galvanic Effect in the Rashba Model
Inverse Spin-Galvanic Effect in the Rashba–Dresslhaus Model
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call