Abstract

Abstract In this paper, we prove Lipschitz stability results for the inverse source problem of determining the spatially varying factor in a source term in the Korteweg–de Vries–Burgers (KdVB) equation with mixed boundary conditions. More precisely, the Lipschitz stability property is obtained using observation data on an arbitrary fixed sub-domain over a time interval. Secondly, we show that stability property can also be achieved from boundary measurements. Our proofs relies on Carleman inequalities and the Bukhgeim–Klibanov method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.