Abstract
In this paper, we consider an inverse source problem for an anisotropic elliptic equation, from boundary measurements. A uniqueness result is established and a local Lipshitz stability, for a linear combination of monopolar and dipolar sources, is discussed. Assuming the number of dipoles bounded by a given integer M, we propose an algebraic algorithm which allows us to estimate the number, the locations and the moments of dipoles. Using special functions, we propose a global Lipschitz stability estimate for dipolar sources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.