Abstract

This paper explores an inverse source problem related to the heat equation, incorporating nonlocal boundary conditions and featuring two-term time-fractional derivatives. The task is to identify a source term that is independent of the spatial variable, as well as to define the temperature distribution based on energy measurements. Since the stated problem cannot be solved by direct use of the generalized Fourier method, we divide the problem into two sub-problems. The well-posedness of each problem is established through the application of the generalized Fourier method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.