Abstract

The paper proposes an inverse reconstruction method for inner cavities in a 2D plate using guided SH-waves. When a pure incident wave mode is sent toward the flaw area, reflected waves are observed at the far field due to mode conversion. From wave scattering theory, the reflected wave field is expressed by an integral over the unknown flaw surface concerning the total wave field. By the introduction of Born approximation and far-field expressions of Green’s function, it is found that the reflection coefficient for the mode of the same order as that of the incident mode is related to the unknown shape of the cavity by Fourier transform relations. By mathematical deduction, we show that if the basic (0th-order) symmetric and the 1st-order antisymmetric modes are used as incident waves, the locations and shapes of upper and lower boundaries of the cavity can be reconstructed. Numerical examples are illustrated in the paper, and a proper condition for applying this method is discussed. The research can act as a basis of nondestructive inspection for latent flaws within more complicated structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.