Abstract

AbstractThe partial automorphism monoid of an inverse semigroup is an inverse monoid consisting of all isomorphisms between its inverse subsemigroups. We prove that a tightly connected fundamental inverse semigroup S with no isolated nontrivial subgroups is lattice determined ‘modulo semilattices’ and if T is an inverse semigroup whose partial automorphism monoid is isomorphic to that of S, then either S and T are isomorphic or they are dually isomorphic chains relative to the natural partial order; a similar result holds if T is any semigroup and the inverse monoids consisting of all isomorphisms between subsemigroups of S and T, respectively, are isomorphic. Moreover, for these results to hold, the conditions that S be tightly connected and have no isolated nontrivial subgroups are essential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.