Abstract

In this work we characterize shift spaces over infinite countable alphabets that can be endowed with an inverse semigroup operation. We give sufficient conditions under which zero-dimensional inverse semigroups can be recoded as shift spaces whose correspondent inverse semigroup operation is a 1-block operation, that is, it arises from a group operation on the alphabet. Motivated by this, we go on to study block operations on shift spaces and, in the end, we prove our main theorem, which states that Markovian shift spaces, which can be endowed with a 1-block inverse semigroup operation, are conjugate to the product of a full shift with a fractal shift.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.