Abstract

We define inverse semigroup actions on topological groupoids by partial equivalences. From such actions, we construct saturated Fell bundles over inverse semigroups and non-Hausdorff \'etale groupoids. We interpret these as actions on $C^*$\nobreakdash -algebras by Hilbert bimodules and describe the section algebras of these Fell bundles. Our constructions give saturated Fell bundles over non-Hausdorff \'etale groupoids that model actions on locally Hausdorff spaces. We show that these Fell bundles are usually not Morita equivalent to an action by automorphisms, that is, the Packer-Raeburn stabilization trick does not generalize to non-Hausdorff groupoids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.