Abstract

The Inverse Scattering Transform (IST) for the defocusing vector nonlinear Schrödinger equations (NLS), with an arbitrary number of components and nonvanishing boundary conditions at space infinities, is formulated by adapting and generalizing the approach used by Beals, Deift, and Tomei in the development of the IST for the N‐wave interaction equations. Specifically, a complete set of sectionally meromorphic eigenfunctions is obtained from a family of analytic forms that are constructed for this purpose. As in the scalar and two‐component defocusing NLS, the direct and inverse problems are formulated on a two‐sheeted, genus‐zero Riemann surface, which is then transformed into the complex plane by means of an appropriate uniformization variable. The inverse problem is formulated as a matrix Riemann‐Hilbert problem with prescribed poles, jumps, and symmetry conditions. In contrast to traditional formulations of the IST, the analytic forms and eigenfunctions are first defined for complex values of the scattering parameter, and extended to the continuous spectrum a posteriori.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.