Abstract
A generalized nonlocal nonlinear Gross–Pitaevskii(GP) equation is presented, which can be reduced to the nonlocal GP equation with self-induced PT-symmetric potential. We derive some novel non-autonomous soliton solutions of nonlocal GP equation via inverse scattering and similarity transformations. These obtained solutions have singularities and are not the standard soliton solutions, here they can be called soliton-like(SL) solutions. Then we consider some controllable behaviors of these non-autonomous wave solutions. The obtained results are different from the solutions of the local nonlinear GP equation. Some propagation phenomena are produced through manipulating non-autonomous SL waves, which can present the potential applications to the soliton wave phenomena in nonlocal wave models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.