Abstract

We present the solution of the weak noise theory (WNT) for the Kardar-Parisi-Zhang equation in one dimension at short time for flat initial condition (IC). The nonlinear hydrodynamic equations of the WNT are solved analytically through a connection to the Zakharov-Shabat (ZS) system using its classical integrability. This approach is based on a recently developed Fredholm determinant framework previously applied to the droplet IC. The flat IC provides the case for a nonvanishing boundary condition of the ZS system and yields a richer solitonic structure comprising the appearance of multiple branches of the Lambert function. As a byproduct, we obtain the explicit solution of the WNT for the Brownian IC, which undergoes a dynamical phase transition. We elucidate its mechanism by showing that the related spontaneous breaking of the spatial symmetry arises from the interplay between two solitons with different rapidities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call