Abstract

In this paper a new approach for microwave imaging of unknown objects embedded in the freespace from phaseless data is presented. Firstly a cost functional is constructed by using the measured amplitude of the total field, which is the norm of the discrepancy between the measured amplitude and the calculated one. Then both the amplitude and phase of the scattered field are retrieved by minimizing the above cost functional. Finally, the geometrical and electrical parameters are reconstructed by using the retrieved scattered field. The phase retrieval process can be achieved in a very short time without adding any burden to the whole inverse scattering problem. The equivalent current density is introduced to reduce the nonlinearity of the inverse problem. The reconstruction of the non-radiating component of the equivalent current density improves the imaging quality. Experimental results are presented for the first time to show the feasibility of inverse scattering from phaseless data. The experimental results also show the validity and stability of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.